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Abstract Soybean rust, caused by Phakopsora pachyrhizi,

is one of the most destructive diseases for soybean produc-

tion. It often causes significant yield loss and may rapidly

spread from field to field through airborne urediniospores. In

order to implement timely fungicide treatments for the most

effective control of the disease, it is essential to detect the

infection and severity of soybean rust. This research

explored feasible methods for detecting soybean rust and

quantifying severity. In this study, images of soybean leaves

with different rust severity were collected using both a

portable spectroradiometer and a multispectral CDD cam-

era. Different forms of vegetation indices were used to

investigate the possibility of detecting rust infection. Results

indicated that both leaf development stage and rust infection

severity changed the surface reflectance within a wide band

of spectrum. In general, old leaves with most severe rust

infection resulted in lowest reflectance. A difference vege-

tation index (DVI) showed a positive correlation with

reflectance differences. However, it lacks solid evidence to

identify such reflectance change was solely caused by rust.

As an alternative, three parameters, i.e. ratio of infected area

(RIA), lesion color index (LCI) and rust severity index

(RSI), were extracted from the multispectral images and

used to detect leaf infection and severity of infection. The

preliminary results obtained from this laboratory-scale

research demonstrated that this multispectral imaging

method could quantitatively detect soybean rust. Further

tests of field scale are needed to verify the effectiveness and

reliability of this sensing method to detect and quantify

soybean rust infection in real time field scouting.
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Introduction

Soybean rust is one of the most destructive diseases for

soybean production in Asia since the 1960s [1] and often

causes significant yield losses. It has been reported that this

disease causes 10–40% yield loss in Thailand, 10–90% loss

in India, 10–50% loss in Southern China, 23–90% loss in

Taiwan, and 40% loss in Japan [2]. Soybean rust has now

occurred in at least 39 countries in both Eastern and

Western hemispheres [2–4]. In the United States, soybean

rust was first detected at Louisiana State University Ag-

Center Research Farm in 2004 [5]. Soybean rust has now

been found in most soybean-producing states in the con-

tinental United States [6]. Because of the rapid spread of

soybean rust pathogen (Phakopsora pachyrhizi), it is vital

to find an effective and quantitative early inspection means

to detect the infection and determine the severity in field

for supporting timely fungicide application to minimize the

losses caused by rust.
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As a foliar disease, the typical symptom on soybean

caused by soybean rust are lesions that range from 2 to

5 mm2 and can be initially just chlorotic and can develop

into tan to dark brown polygonal lesions depending on the

specific reaction with the host. Within each of the lesions is

one to many erumpent, globose uredinia. Soybean rust is

usually found on the bottom leaves to start with and

gradually spreads to the top leaves and finally infects all the

leaves on the plant (Fig. 1). Such features of soybean rust

make it possible to detect the disease using multispectral

imaging technology.

Traditionally, crop disease diagnosis is performed by

experienced plant pathologists or plant disease diagnosti-

cians, that with a trained eye can diagnose most diseases in

the field, and make disease control recommendations spe-

cifically to apply fungicides if needed. In recent years,

various sensing technologies have been developed for

automatically detecting crop diseases. Satellite-based mul-

tispectral sensing is one of such technologies that have been

used; however, mainly due to the limitation in spatial reso-

lution the space-based sensing technology was not

satisfactory on detecting early disease symptoms, even when

the reflectance wavelengths of the infected crop canopy

were within the collectable bandwidth of the satellite-based

sensor [8]. On the other hand, high resolution of multi-

spectral images could provide the capability of monitoring

the severity of large scale crop diseases [9]. Heald et al. [10]

reported using Color Infrared (CIR) photography to estimate

infestation areas caused by cotton root rot (Phymatotrichum

omnivorum). Lorenzen and Jensen [11] tried to detect

powdery mildew on barley leaves using the reflectance

spectrum. They found that the spectral reflectance of inoc-

ulated resistant leaves was significantly higher between 400

and 1100 nm than control plants as soon as 10 days after

inoculation. This method also was used to distinguish dis-

eased cucumber leaves from healthy leaves by inspecting

leaf reflectance of cucumber [12].

Under laboratory conditions, Peterson and Aylor [13]

found that high intensity emission spots corresponded to the

regions where bean rust infection occurred on bean leaves.

They also observed that significant chlorophyll fluorescence

changes preceding the first visual symptoms by 3–5 days.

However, those fluorescence signals could easily be

swamped by background ambient illumination, which

restricted its applications in the field. In order to overcome

this problem, Ludeker et al. [14] have tried to use a laser

beam as excitation light to induce leaf fluorescence.

Johansson et al. [15] applied a short pulsed laser synchro-

nized with a gated intensified sensor to develop a

multispectral fluorescence imaging system (MFIS). The

results showed that the MFIS was able to exclude back-

ground illumination and could be used in outdoor

conditions. Pinter et al. [16] found that some soil-borne

fungus infected crops, such as cotton plants infected with

P. omnivorum and sugar beets roots infected with Pythium

apanidermatum, would display a noticeable sunlit leaf

temperature that could be 3–5 �C warmer than adjacent

healthy plants. Chaerle et al. [17] also reported that thermal

lesions were normally 0.3–0.4 �C warmer than that of sur-

rounding tissues and such hot spots were visible before

characteristic disease symptoms appeared. To improve the

sensitivity and the accuracy of the sensing devices, a com-

mon approach has been to use more than one sensor and to

extract the otherwise hidden information from outputs of

those sensors for detecting crop diseases. Bravo et al. [18]

fused hyperspectral reflection and fluorescence imaging to

improve the capability of detecting yellow rust (Puccinia

striiformis) on winter wheat. The authors reported that the

data fusion approach allowed them to reduce disease diag-

nosing error by 1–2%.

The goal of this research was to investigate the possi-

bility of quantitatively detecting soybean rust infection

with different levels of severity using multispectral sensors

mountable on field equipment. This goal was accomplished

through (a) searching for sensitive reflectance spectral

bands of soybean leaves; (b) investigating the possibility of

detecting soybean rust infection on leaves using a multi-

spectral imaging sensor; and (c) formulating appropriate

methods for quantifying its severity. Based on the defined

goal, this research was limited to proof of concept on

baseline data collected from a controlled environment. The

application study would be conducted at a follow-up study

after the concept has been proven.

Fig. 1 Illustration of a soybean plant infected by rust pathogen [7]
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Methodology and procedures

Sensing devices

A portable FieldSpecTM spectroradiometer (Analytical

Spectral Device Inc., Boulder, CO), with a sensitivity range

from 325 to 1075 nm at a 1.6 nm sampling interval and a 25�
field of view, was used to measure the reflectance spectrum

of soybean leaves. A white panel with approximately 100%

reflectance across the entire spectrum was used as a reference

for each test. It was made of Spectralon which was a pro-

prietary material made of cintered polytetrafloraethylene.

To collect multispectral images of rust infected leaves, a

multispectral CDD camera (MS3100-RGB, Duncan Tech,

Auburn, CA) was used. This camera consisted of three

CCD channels of blue (B), green (G) and red (R) with an

image resolution of 1392 H 9 1040 V at 8-bit pixel-1.

The B, G and R channels were centered at 475, 540 and

625 nm, with a bandwidth of 50, 50 and 60 nm, respec-

tively. The focal length of the lens was 14 mm. A digital

frame grabber (IMAQ PCI-1428, National Instrument,

Austin, TX) installed in a desktop PC computer was used to

capture the sample images. This system was capable of

capturing up to 7.5 images s-1.

Baseline data collection

All the tests were performed under natural sunlight. Multi-

spectral images of soybean leaves at different severity levels

were collected as baseline data. Specifically, images of four

soybean leaves were collected from four layers of a rust

infected plant from top to bottom, representing four different

levels of severity (Fig. 2). The lower level leaflet represented

the most severe rust infection with extensive dark brown or

reddish brown lesions. The top layer leaflet contained the

least rust infection with no visible lesions. There were 24 leaf

samples from 6 rust infected soybean plants being measured.

The images of each sample were taken twice using the

multispectral camera in a greenhouse environment on a

sunny day at the University of Illinois at Urbana-Champaign.

The reflectance spectrums of those plants, as well as of

selected individual leaves, were measured using the spect-

roradiometer. Each reflectance measurement was repeated

three times and the average was taken as the final result.

There were 48 images and 72 reflectance data acquired in all.

Four representative leaflets with different levels of rust

infection were chosen for reflectance spectrum analysis and

multispectral image analysis.

Sensitive bands investigation

One fundamental task in developing optical sensors for

crop disease detection is to find out the sensitive bands of

the sensor to the diseases to be detected. To locate such

bands for detecting soybean rust in terms of leaf reflectance

to natural sunlight, the spectroradiometer was used to

measure the leaf reflectance over a wide band from 350 to

1050 nm that covers from visible to near infrared bands.

Three measurements were made for each sample, and the

average value was taken as the characteristic curve. The

reflectance spectrums of the four representative leaflets

with different levels of rust infection were used for

analysis.

To investigate the possibility of directly using the

reflectance spectrum for detecting rust infection, a collec-

tion of vegetation indices, originally developed for

assessing crop growth conditions, such as Normalized

Difference Vegetation Index (NDVI) [19], Green Nor-

malized Difference Vegetation Index (GNDVI) [20], Ratio

Vegetation Index (RVI) [21], Green Ratio Vegetation

Index (GRVI) [22], Difference Vegetation Index (DVI)

[23], and Normalized Difference Green Index (NDGI) [19],

were examined to test their capabilities on distinguishing

infection severities. All those trials used the same bands as

developed for crop growing assessment, namely the

reflectance at G band (550 nm), R band (670 nm) and/or

NIR band (800 nm). The index which has the potential to

detect rust should present a noticeable difference on its

values collected from leaves with different infection

severities.

Image processing methods for detecting

and quantifying rusting areas

The core of this research was to develop a systematic

method capable of sensitive and reliable detection, and toFig. 2 Illustration of four leaf images collected from a soybean plant
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quantify rust areas on soybean leaves to support on-line

rust diagnosis based on multispectral images.

The base images of infected plants were collected as a

whole using the multispectral CCD camera under the nat-

ural sunlight. The infected leaflets of different severities

were separated from the original plant images for mini-

mizing the image processing load, as well as for

eliminating the unnecessary complicity.

A three-step approach, namely infected area separation,

lesion color identification and rust severity quantification,

was developed. Each step would output a characteristic

parameter for quantifying the corresponding parameter.

Those parameters were ratio of infected area (RIA), lesion

color index (LCI) and rust severity index (RSI), respectively.

The infected area separation starts at segmenting lesion

pixels in a leaf image using a threshold function defined as

follows:

GLðx;y; iÞ

¼ H x;y; ið Þ if 255�Rð Þ2þ 255�Gð Þ2þB2�GLthreshold

I x;y; ið Þ if 255�Rð Þ2þ 255�Gð Þ2þB2\GLthreshold

(

ð1Þ

where GLðx; y; iÞ is the gray level of a pixel at point (x, y)

in channel i, Hðx; y; iÞ and Iðx; y; iÞ are gray levels of pixels

(x, y) located in either the health or the infected regions in

channel i. R, G and B are the gray levels of pixel (x, y) in

red, green and blue channel, and noted as channels 1, 2 and

3, respectively.

As shown in Eq. 1, if the gray level of a pixel satisfies

ð255� RÞ2 þ ð255� GÞ2 þ B2\GLthreshold; this pixel is

classified as an infected pixel. Otherwise, it is classified as

a healthy pixel. Because the RGB values of pure green and

yellow colors are (0, 255, 0) and (255, 255, 0), a threshold

value was determined through calculating ð255� RÞ2 þ
ð255� GÞ2 þ B2 by reducing the gray values in R, G and B

channels until it can reliably segment the infected and

healthy pixels.

After pixel segmentation, an RIA could be determined

in terms of the ratio of total number of infected pixels to

the whole leaf pixels in channel i as follows:

IA ¼

P
j

Ij x; y; ið ÞP
j

Hj x; y; ið Þ þ
P

j
Ij x; y; ið Þ � 100% ð2Þ

While the common believe is that the degree of disease

severity increases with the infected area, the color of the

infected spots is another common criterion of infection

severity by human eye. To incorporate both the infection area

and infected spots area in severity quantification, a LCI was

defined to serve for this purpose in this research. From

extensive image analysis, it was found that the value of

R� Gð Þ offered an important indication on color analysis. A

pixel appears green color if R� Gð Þ\0; or brown if

R� Gð Þ[ 0: The larger the R� Gj j value, the darker the

color will be. Based on this fact, a LCI was defined as follows:

LCI ¼ R� Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ G2 þ B2
p ð3Þ

The obtained LCI values over the entire band of pixel

gray level will result in a histogram of lesion color

distribution with LCI ¼ 0 being a demarcation point,

which can be used as an important indicator for rust

severity assessment.

For more effectively utilizing the obtained LCI distri-

bution in rust severity assessment, a new index, the RSI,

was defined as follows:

RSI ¼

P
k

LCIk 8LCIk [ 0P
k

LCIk 8LCIk� 0
ð4Þ

Higher RSI values indicate increased disease severity.

Results and discussion

Reflectance spectrum analysis

Figure 3 shows the typical reflectance spectrums of four

leaflets with different levels of rust infection. Each of those

spectrums was the average of three measurements on the four

representative leaflets. From general observation, the overall

reflectance level decreased as rust infection becomes sev-

erer. It also showed that there was a peak reflectance

appeared around 550 nm range (G band). Such a phenome-

non was caused by the chlorophyll content and nitrogen

content of leaves [24, 25]. The differences among reflectance

levels of leaves with different rust severity became more
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Fig. 3 Reflectance spectrums of four representative leaflets with

different rust severity
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distinguishable in the NIR bands. Therefore, the NIR band of

reflectance was the potential band suitable for rust detection.

To evaluate the possibility of using existing vegetation

indices, such as NDVI, GNDVI, NDGI, RVI, GRVI and

DVI, the values of those indices were calculated to detect

soybean rust and determine its degree of severity. Table 1

summarizes the values of difference indices corresponding

to different rust severities. However, all those indices,

except for DVI, did not represent a definite correlation with

infection severity. While DVI did show a positive corre-

lation with rust severity levels, this research did not collect

sufficient samples to allow a reliable elimination of other

attributes, such as crop nutritional health. Therefore, fur-

ther studies are needed to confirm the feasibility of using

DVI as an effective tool for soybean rust detection.

Multispectral image analysis

Since convincible rust infection detection using vegetation

index based spectrum analysis approach was not obtained,

we investigated the multispectral image analysis approach

for accomplishing the same purpose. The critical step for

reducing computational load in image processing was to

separate the leaflet of interest from whole plant image. At

image preparation step, leaflet images were separated

manually by removing both background and other portion

of soybean plant using Photoshop 7.0 (Adobe Systems

Incorporated, New York, NY). Images of soybean leave

with severe, medium, light and non-visible rust levels were

prepared for methodology development.

The next step was to segment the infected and healthy

pixels in leaflet image using Eq. 1. The key for such seg-

mentation was to determine the threshold value of the gray

level for each degree of rust severity. All the threshold

values were manually selected based on a guideline of

clearly segmenting the infected pixels from healthy ones.

After the infected and healthy pixels being segmented, the

RIA could be calculated using Eq. 2.

As an example, when analyzing a leaflet image with

medium rust severity, the threshold value for segmenting the

infected and healthy pixels was selected as 50,000. This

threshold value could effectively segment the infected spots

from the leaflet as illustrated in Fig. 4. The number of

infected pixels and healthy pixels were 17,916 and 159,095,

respectively. By adding up the segmented pixels of infected

and healthy pixels, the corresponding RIA was about 10.1%.

Similar results were obtained from leaflet images with

similar degree of infection based on visual inspections.

By adjusting the threshold values, specifically, 20,000

for severe infection, 60,000 for light infection and 62,000

for non-visible infection, the average RIAs were 58.8%,

1.7% and 0.1% for severe, light, and non-visible levels of

rust infection, respectively.

It was also noted that not only could this developed system

segment the rust infection pixels, it could also segment out

powdery mildew infected pixels. During the investigation,

one leaflet image with light level of rust infection was

infected by powdery mildew. By applying a similar approach

as segmenting rust infected pixels, a method for segmenting

the powdery mildew infected pixels was also developed.

Because the color of the powdery mildew disease is white, by

applying pure white RGB value of (255, 255, 255) into

ð255� RÞ2 þ ð255� GÞ2 þ ð255� BÞ2\GLthreshold; the

resulting pixels were classified as powdery mildew infected

pixel. The average gray value of the leaflet image in three

channels was 55, 82, 41, which resulted in a ð255� RÞ2 þ
ð255� GÞ2 þ ð255� BÞ2 value as 115,725 for powdery

mildew infection. By reducing this value until the powdery

mildew infected pixels were segmented out as much as

possible, a threshold was finally set at 92,000 for powdery

Table 1 Values of vegetation indices corresponding to different rust infection levels

Rust level NDVI ¼ NIR�R
NIRþR GNDVI ¼ NIR�G

NIRþG NDGI ¼ G�R
GþR RVI ¼ NIR

R GRVI ¼ NIR
G DVI ¼ NIR� R

Severe 0.79 0.58 0.40 8.72 3.72 0.24

Medium 0.77 0.53 0.41 7.67 3.22 0.37

Light 0.80 0.59 0.40 9.12 3.88 0.56

Non-visible 0.78 0.53 0.43 8.08 3.23 0.65

Fig 4 Illustration of

segmentation of rust infected

and healthy pixels from a leaflet

image. a Leaflet image, b
Disease area image, c Healthy

area image
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mildew infection. As shown in Fig. 5, the multi-class pixel

segmentation could selectively segment both the rust infec-

ted and powdery mildew infected pixels. The number of rust

and powdery mildew infected pixels are 5,674 and 26,958,

respectively. Visual inspection verified that this method

could provide a satisfactory segmentation for both rust and

powdery mildew inspection. The powdery mildew infected

area (PMIA) was 8.1%.

Visual observation indicated that rust infected areas on a

soybean leaflet increases with the degree of severity.

However, it is insufficient to determine the severity of

infection solely based on infection areas. A LCI and dis-

tribution was created to quantify the attribution of lesion

color by using Eq. 3. Calculate LCI values of all pixels

segmented in infected leaflets and display them in a his-

togram (Fig. 6). When setting LCI ¼ 0 as the demarcation

point, all LCI\0 indicates the colors of pixels are located

in gray green region, whereas all LCI [ 0 denotes tan or

dark brown pixels. So this histogram distribution could

visibly reveal whether a leaflet is more green than brown.

By applying Eq. 4, a RSI can be determined by the area

ratio of LCI [ 0 over LCI\0 as an additional measure of

rust severity. In the example of a leaflet with medium

degree of rust infection, the resulting RSI value was 1.13.

After applying the same procedures to all samples with

different severity levels of rust infection, a positive corre-

lation was found between rust severity, measured by RSI,

and the total infected area. Table 2 summarizes four rep-

resentative leaflets with different levels of rust infection.

From these results, it was found that LCI histogram pro-

vided a good indicator for rust infection as well as the

degree of severity. When a leaflet was not infected with

rust pathogen, all pixels should have a negative LCI value,

resulting in the LCI histogram distribution in the left side

of the demarcation point. For a leaflet was severely

infected, many pixels would have a positive LCI value,

resulting in LCI distribution in the right side of the

demarcation point. For LCI histogram was evenly distrib-

uted on both sides of demarcation point, a medium level

infection could be quantified.

These results indicated that with the defined character-

istic parameters, it was technically possible to detect

soybean rust infection, and assess its degree of severity

based on multispectral images of soybean leaflets. It also

showed a potential of using the same system, supported by

different color indices, to detect other soybean diseases,

such as the powdery mildew disease.

Conclusion

A collection of soybean leaflets with different degrees of rust

severity were used in both reflectance spectrum and multi-

spectrum analyses. Obtained results verified that reflectance

values differed by the rust intensity. The leaflets with the

most rust had the lowest values of reflectance. Among the

different channels, the reflectance values in NIR (centered at

800 nm) band showed the most obvious differences related

to rust severity. While DVI values showed a positive cor-

relation to rust severity, it requires more research to verify

the correlation between DVI and rust severity.

After analyzing the multispectral images of infected

leaflets, three image processing parameters (RIA, LCI and

RSI) were defined and formulated to describe the degree of

rust severity. Among those parameters, RIA was used to

Fig. 5 Illustration of

segmentation of rust and

powdery mildew infected pixels

from a leaflet image. a Leaflet

image, b rust disease area

image, c white spot area image
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measure the percentage of leaf area being infected with rust

pathogen. LCI was used to measure the color of leaflet

pixels. The RSI was developed to quantify the severity of

rust infection. Laboratory-scale test results verified that this

set of defined parameters, especially the RSI, positively

correlate with the severity of rust infection.

This paper reports the preliminary results in developing a

multispectral imaging sensor for detecting soybean rust

infection. More comprehensive studies are needed to verify

sensible range and accuracy of the developed methods in dif-

ferent environments. A machine-mount in-field multispectral

image sensing device will be constructed for performing

field tests.
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data; however, the USDA neither guarantees nor warrants the stan-

dard of the product, and the use of the name by USDA implies no

approval of the product to the exclusion of others that may also be

suitable.
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